67 research outputs found

    Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers

    Get PDF
    We have developed a workstation based on holographic tweezers to optically trap, move and characterize metal nanoparticles. Our advanced darkfield imaging system allows us to simultaneously image and take spectra of single trapped metal nanoparticles. We take advantage of the beamshaping abilities of the spatial light modulator and correct for aberrations of the trapping optics. We monitor the improvement of the optical trap with video-based nanoparticle tracking. Furthermore we theoretically assess the capabilities and limitations of video-based tracking for nanoparticle position detection, in particular with respect to acquisition frequencies below the corner frequency

    A multi-object spectral imaging instrument

    Get PDF
    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the CCD for wavelength. A CMOS camera on the front port of the microscope allows the full image of the sample to be displayed and can also be used for particle tracking, providing spectra of multiple particles moving in the sample. We demonstrate the system by recording the spectra of multiple fluorescent beads in aqueous solution and from multiple points along a microscope sample channel containing a mixture of red and blue dye

    A compact holographic optical tweezers instrument

    Get PDF
    Holographic optical tweezers have found many applications including the construction of complex micron-scale 3D structures and the control of tools and probes for position, force, and viscosity measurement. We have developed a compact, stable, holographic optical tweezers instrument which can be easily transported and is compatible with a wide range of microscopy techniques, making it a valuable tool for collaborative research. The instrument measures approximately 30×30×35 cm and is designed around a custom inverted microscope, incorporating a fibre laser operating at 1070 nm. We designed the control software to be easily accessible for the non-specialist, and have further improved its ease of use with a multi-touch iPad interface. A high-speed camera allows multiple trapped objects to be tracked simultaneously. We demonstrate that the compact instrument is stable to 0.5 nm for a 10 s measurement time by plotting the Allan variance of the measured position of a trapped 2 ÎŒm silica bead. We also present a range of objects that have been successfully manipulated

    Optical binding mechanisms: a conceptual model for Gaussian beam traps

    Get PDF
    Optical binding interactions between laser-trapped spherical microparticles are familiar in a wide range of trapping configurations. Recently it has been demonstrated that these experiments can be accurately modeled using Mie scattering or coupled dipole models. This can help confirm the physical phenomena underlying the inter-particle interactions, but does not necessarily develop a conceptual understanding of the effects that can lead to future predictions. Here we interpret results from a Mie scattering model to obtain a physical description which predict the behavior and trends for chains of trapped particles in Gaussian beam traps. In particular, it describes the non-uniform particle spacing and how it changes with the number of particles. We go further than simply \emph{demonstrating} agreement, by showing that the mechanisms ``hidden'' within a mathematically and computationally demanding Mie scattering description can be explained in easily-understood terms.Comment: Preprint of manuscript submitted to Optics Expres

    Optically trapped bacteria pairs reveal discrete motile response to control aggregation upon cell–cell approach

    Get PDF
    Aggregation of bacteria plays a key role in the formation of many biofilms. The critical first step is cell–cell approach, and yet the ability of bacteria to control the likelihood of aggregation during this primary phase is unknown. Here, we use optical tweezers to measure the force between isolated Bacillus subtilis cells during approach. As we move the bacteria towards each other, cell motility (bacterial swimming) initiates the generation of repulsive forces at bacterial separations of ~3 ÎŒm. Moreover, the motile response displays spatial sensitivity with greater cell–cell repulsion evident as inter-bacterial distances decrease. To examine the environmental influence on the inter-bacterial forces, we perform the experiment with bacteria suspended in Tryptic Soy Broth, NaCl solution and deionised water. Our experiments demonstrate that repulsive forces are strongest in systems that inhibit biofilm formation (Tryptic Soy Broth), while attractive forces are weak and rare, even in systems where biofilms develop (NaCl solution). These results reveal that bacteria are able to control the likelihood of aggregation during the approach phase through a discretely modulated motile response. Clearly, the force-generating motility we observe during approach promotes biofilm prevention, rather than biofilm formation

    Design of a high-performance optical tweezer for nanoparticle trapping

    Get PDF
    Integrated optical nanotweezers offer a novel paradigm for optical trapping, as their ability to confine light at the nanoscale leads to extremely high gradient forces. To date, nanotweezers have been realized either as photonic crystal or as plasmonic nanocavities. Here, we propose a nanotweezer device based on a hybrid photonic/plasmonic cavity with the goal of achieving a very high quality factor-to-mode volume (Q/V) ratio. The structure includes a 1D photonic crystal dielectric cavity vertically coupled to a bowtie nanoantenna. A very high Q/V ~ 107 (λ/n)−3 with a resonance transmission T = 29 % at λR = 1381.1 nm has been calculated by 3D finite element method, affording strong light–matter interaction and making the hybrid cavity suitable for optical trapping. A maximum optical force F = −4.4 pN, high values of stability S = 30 and optical stiffness k = 90 pN/nm W have been obtained with an input power Pin = 1 mW, for a polystyrene nanoparticle with a diameter of 40 nm. This performance confirms the high efficiency of the optical nanotweezer and its potential for trapping living matter at the nanoscale, such as viruses, proteins and small bacteria

    Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method

    Get PDF
    We investigate the use of a hybrid nanoresonator comprising a photonic crystal (PhC) cavity coupled to a plasmonic bowtie nanoantenna (BNA) for the optical trapping of nanoparticles in water. Using finite difference time-domain simulations, we show that this structure can confine light to an extremely small volume of ~30,000 nm3 (~30 zl) in the BNA gap whilst maintaining a high quality factor (5400–7700). The optical intensity inside the BNA gap is enhanced by a factor larger than 40 compared to when the BNA is not present above the PhC cavity. Such a device has potential applications in optical manipulation, creating high precision optical traps with an intensity gradient over a distance much smaller than the diffraction limit, potentially allowing objects to be confined to much smaller volumes and making it ideal for optical trapping of Rayleigh particles (particles much smaller than the wavelength of light)

    An automated Raman-based platform for the sorting of live cells by functional properties

    Get PDF
    Stable-isotope probing is widely used to study the function of microbial taxa in their natural environment, but sorting of isotopically labelled microbial cells from complex samples for subsequent genomic analysis or cultivation is still in its early infancy. Here, we introduce an optofluidic platform for automated sorting of stable-isotope-probing-labelled microbial cells, combining microfluidics, optical tweezing and Raman microspectroscopy, which yields live cells suitable for subsequent single-cell genomics, mini-metagenomics or cultivation. We describe the design and optimization of this Raman-activated cell-sorting approach, illustrate its operation with four model bacteria (two intestinal, one soil and one marine) and demonstrate its high sorting accuracy (98.3 ± 1.7%), throughput (200-500 cells h-1; 3.3-8.3 cells min-1) and compatibility with cultivation. Application of this sorting approach for the metagenomic characterization of bacteria involved in mucin degradation in the mouse colon revealed a diverse consortium of bacteria, including several members of the underexplored family Muribaculaceae, highlighting both the complexity of this niche and the potential of Raman-activated cell sorting for identifying key players in targeted processes.</p

    Transfer of orbital angular momentum from an optical vortex beam to a nanoparticle

    No full text
    Orbital angular momentum has been transferred to optically confined particles from light fields possessing an optical vortex. These experiments have to date been restricted to microparticles in the Mie or Lorentz-Mie regime, that where the particle is comparable to or larger than the wavelength of the trapping light. We demonstrate the first conclusive experimental transfer of orbital angular momentum to metallic nanoparticles in an optical trap created by a vortex light field: the trapping geometry utilizes a blue-detuned laser and confines the particles to the dark region of the vortex beam

    Optical manipulation of nanoparticles: a review

    Get PDF
    Optical trapping is an established field for movement of micron-size objects and cells. However, trapping of metal nanoparticles, nanowires, nanorods and molecules has received little attention. Nanoparticles are more challenging to optically trap and they offer ample new phenomena to explore, for example the plasmon resonance. Resonance and size effects have an impact upon trapping forces that causes nanoparticle trapping to differ from micromanipulation of larger micron-sized objects. There are numerous theoretical approaches to calculate optical forces exerted on trapped nanoparticles. Their combination and comparison gives the reader deeper understanding of the physical processes in an optical trap. A close look into the key experiments to date demonstrates the feasibility of trapping and provides a grasp of the enormous possibilities that remain to be explored. When constructing a single-beam optical trap, particular emphasis has to be placed on the choice of imaging for the trapping and confinement of nanoparticles
    • 

    corecore